Folge dem Video um zu sehen, wie unsere Website als Web-App auf dem Startbildschirm installiert werden kann.
Anmerkung: This feature may not be available in some browsers.
Yes , sorry for this . I use here V 1.99 and all works now . Sometimes i can't test all parameter .Hallo Rolf und Andre.
v 1.97 had the fx section freezed out. v.199 is now everything working supersmooth again.
I have created a local ebay for my Jeannie, just for pickup...
Want to see if I find someone interested in it, then I will buy another one!
Tnks for the constant updates! I have modified a computertalk to sound very much like
a MicroFreak, just severl voices better![]()
I think a capacitative key like that of the Microfreak in a plug'in design like the Roland Boutique, if someone wanted to add one or two octave keyboard, it would be really cool, maybe a little bit smaller??? Tchusssss!

Noch eine kleine Kostprobe von der Jeannie mit Supersaw Oszillator.
Osc1+2 leichtes detune und Chorus2 mittlere Lautstärke.
Jeannie macht den Sound alleine.
Auf Tubeohm.com wird von „Superwave function“ in der 2er Version geschrieben - hier von Supersaw. Kann mir jemand die Begriffe kurz erläutern?
// Supersaw
        case WAVEFORM_SAWTOOTH:
        for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
      
            saw_inc32 += 2039 * SupersawSpreadA;
            uint32_t spread_2 = saw_inc32;
            uint32_t spread_3 = saw_inc32 << 1;
            uint32_t spread_4 = saw_inc32 << 2;
            uint32_t spread_5 = saw_inc32 << 3;
            uint32_t ph_1 = phasedata[i];
            uint32_t ph_2 = (ph_1 + spread_2);
            uint32_t ph_3 = (ph_1 + spread_3) >> 1;
            uint32_t ph_4 = (ph_1 + spread_4) >> 2;
            uint32_t ph_5 = (ph_1 + spread_5) >> 3;
            int16_t val_1 = signed_multiply_32x16t(magnitude * Supersaw_gain1A, ph_1);
            int16_t val_2 = signed_multiply_32x16t(magnitude * Supersaw_gain2A, ph_2);
            int16_t val_3 = signed_multiply_32x16t(magnitude * Supersaw_gain2A, ph_3);
            int16_t val_4 = signed_multiply_32x16t(magnitude * Supersaw_gain2A, ph_4);
            int16_t val_5 = signed_multiply_32x16t(magnitude * Supersaw_gain2A, ph_5);
            *bp++ = val_1 + val_2 + val_3 + val_4 + val_5;
        }
        break;
	On the basis that you are unlikely to get at least 50 pre-orders for metal cases, can you publish the vector file that has been provided to PlexiLaser (Mr. Schon)?It's even more expensive than having a whole case made right away.
A metal case would cost between 70..80 €.
The question is how many people would buy it here since I have to pre-finance at least 50 cases.
G
Andre'
Kann auf Tubeohm.com keinen Hinweis finden. Wo genau ?
It is only for the panel . This is the File i use for Plexilaser. Can be PDF or ESP .On the basis that you are unlikely to get at least 50 pre-orders for metal cases, can you publish the vector file that has been provided to PlexiLaser (Mr. Schon)?
I would like to make my own top panel, but the PDF file posted here is not adequate.
Thank-you
thanks Andre,It is only for the panel. This is the File i use for Plexilaser. Can be PDF or ESP .
Have you ask him ??
// Supersaw
        case WAVEFORM_SAWTOOTH:
        uint16_t phase_spread = (inc & 0x0000FFFF) * SupersawSpreadA >> 10;
        uint32_t phase_increment = inc & 0x000000FF;
        uint16_t increments[3];
        for (uint8_t i = 0; i < 3; ++i) {
            phase_increment += phase_spread;
            increments[i] = phase_increment;
        }
        
        for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
            data_qs_phase[0] += increments[0];
            data_qs_phase[1] += increments[1];
            data_qs_phase[2] += increments[2];
            
            uint32_t ph_1 = phasedata[i];
            uint32_t ph_2 = (ph_1 + data_qs_phase[0]);
            uint32_t ph_3 = (ph_2 + data_qs_phase[1]);
            uint32_t ph_4 = (ph_3 + data_qs_phase[2]);
            
            
            int16_t val_1 = signed_multiply_32x16t(magnitude * Supersaw_gain1A, ph_1);
            int16_t val_2 = signed_multiply_32x16t(magnitude * Supersaw_gain2A, ph_2);
            int16_t val_3 = signed_multiply_32x16t(magnitude * Supersaw_gain2A, ph_3);
            int16_t val_4 = signed_multiply_32x16t(magnitude * Supersaw_gain2A, ph_4);               
            *bp++ = val_1 + val_2 + val_3 + val_4;
        }
        break;
	Ist noch nicht 100 %tig wir arbeiten noch dran ....Das klingt doch inzwischen richtig klasse.![]()
Falls es jemanden interessiert: Ich warte bei der Jeanni sehnsüchtig auf Unterstützung für Sustain-Pedal und MIDI-CC.
// Supersaw
        case WAVEFORM_SAWTOOTH:
        uint32_t phase_spread = (phase_increment >> 14) * SupersawSpreadA;   
        ++phase_spread;
        uint32_t saw_phase_increment = phase_increment & 0x000000FF; // add up 8bit random value
        uint32_t increments[3];
        for (uint8_t i = 0; i < 3; ++i) {
            saw_phase_increment += phase_spread;
            increments[i] = saw_phase_increment;
        }
    
        for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
    
            data_qs_phase[0] += increments[0];
            data_qs_phase[1] += increments[1];
            data_qs_phase[2] += increments[2];
        
            uint32_t ph_1 = phasedata[i];
            uint32_t ph_2 = (ph_1 + data_qs_phase[0]);
            uint32_t ph_3 = (ph_2 + data_qs_phase[1]);
            uint32_t ph_4 = (ph_3 + data_qs_phase[2]);
        
            int16_t val_1 = signed_multiply_32x16t(magnitude * Supersaw_gain1A, ph_1);
            int16_t val_2 = signed_multiply_32x16t(magnitude * Supersaw_gain2A, ph_2);
            int16_t val_3 = signed_multiply_32x16t(magnitude * Supersaw_gain2A, ph_3);
            int16_t val_4 = signed_multiply_32x16t(magnitude * Supersaw_gain2A, ph_4);
            *bp++ = val_1 + val_2 + val_3 + val_4;
        }
        break;
class AudioSynthWaveformModulatedTS : public AudioStream
{
public:
  AudioSynthWaveformModulatedTS(void) : AudioStream(2, inputQueueArray),
    phase_accumulator(0), phase_increment(0), modulation_factor(32768),
    magnitude(0), arbdata(NULL), sample(0), tone_offset(0),
    tone_type(WAVEFORM_SINE), modulation_type(0), syncFlag(0) {
  }
  void frequency(float freq) {
    if (freq < 0.0) {
      freq = 0.0;
    } else if (freq > AUDIO_SAMPLE_RATE_EXACT / 2) {
      freq = AUDIO_SAMPLE_RATE_EXACT / 2;
    }
    phase_increment = freq * (4294967296.0 / AUDIO_SAMPLE_RATE_EXACT);
    if (phase_increment > 0x7FFE0000u) phase_increment = 0x7FFE0000;
  }
  void amplitude(float n) { // 0 to 1.0
    if (n < 0) {
      n = 0;
    } else if (n > 1.0) {
      n = 1.0;
    }
    magnitude = n * 65536.0;
  }
   void sync() {
    syncFlag = 1;
  }          
  void offset(float n) {
    if (n < -1.0) {
      n = -1.0;
    } else if (n > 1.0) {
      n = 1.0;
    }
    tone_offset = n * 32767.0;
  }
  void begin(short t_type) {
    tone_type = t_type;
    if (t_type == WAVEFORM_BANDLIMIT_SQUARE)
      band_limit_waveform.init_square (phase_increment) ;
    else if (t_type == WAVEFORM_BANDLIMIT_PULSE)
      band_limit_waveform.init_pulse (phase_increment, 0x80000000u) ;
    else if (t_type == WAVEFORM_BANDLIMIT_SAWTOOTH || t_type == WAVEFORM_BANDLIMIT_SAWTOOTH_REVERSE)
      band_limit_waveform.init_sawtooth (phase_increment) ;
  }
  void begin(float t_amp, float t_freq, short t_type) {
    amplitude(t_amp);
    frequency(t_freq);
    begin (t_type) ;
  }
  void arbitraryWaveform(const int16_t *data, float maxFreq) {
    arbdata = data;
  }
  void frequencyModulation(float octaves) {
    if (octaves > 12.0) {
      octaves = 12.0;
    } else if (octaves < 0.1) {
      octaves = 0.1;
    }
    modulation_factor = octaves * 4096.0;
    modulation_type = 0;
  }
  void phaseModulation(float degrees) {
    if (degrees > 9000.0) {
      degrees = 9000.0;
    } else if (degrees < 30.0) {
      degrees = 30.0;
    }
    modulation_factor = degrees * (65536.0 / 180.0);
    modulation_type = 1;
  }
  virtual void update(void);
 
 
 
private:
  audio_block_t *inputQueueArray[2];
  uint32_t phase_accumulator;
  uint32_t phase_increment;
  uint32_t modulation_factor;
  int32_t  magnitude;
  const int16_t *arbdata;
  uint32_t phasedata[AUDIO_BLOCK_SAMPLES];
  int16_t  sample; // for WAVEFORM_SAMPLE_HOLD
  int16_t  tone_offset;
  uint8_t  tone_type;
  uint8_t  modulation_type;
  int16_t  syncFlag;
  uint32_t data_qs_phase[3];
  BandLimitedWaveform band_limit_waveform;
 
};